skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bergman, O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The results of a search for stealth supersymmetry in final states with two photons and jets, targeting a phase space region with low missing transverse momentum ( p T miss ), are reported. The study is based on a sample of proton-proton collisions at s = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb 1 . As LHC results continue to constrain the parameter space of the minimal supersymmetric standard model, the low p T miss regime is increasingly valuable to explore. To estimate the backgrounds due to standard model processes in such events, we apply corrections derived from simulation to an estimate based on a control selection in data. The results are interpreted in the context of simplified stealth supersymmetry models with gluino and squark pair production. The observed data are consistent with the standard model predictions, and gluino (squark) masses of up to 2150 (1850) GeV are excluded at the 95% confidence level. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  2. A<sc>bstract</sc> Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb−1. The search uses two observables,$$ \mathcal{O} $$ O 1and$$ \mathcal{O} $$ O 3, which are Lorentz scalars. The observable$$ \mathcal{O} $$ O 1is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while$$ \mathcal{O} $$ O 3consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model. 
    more » « less
  3. Abstract The double differential cross sections of the Drell–Yan lepton pair ($$\ell ^+\ell ^-$$ + - , dielectron or dimuon) production are measured as functions of the invariant mass$$m_{\ell \ell }$$ m , transverse momentum$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) , and$$\varphi ^{*}_{\eta }$$ φ η . The$$\varphi ^{*}_{\eta }$$ φ η observable, derived from angular measurements of the leptons and highly correlated with$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) , is used to probe the low-$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) region in a complementary way. Dilepton masses up to 1$$\,\text {Te\hspace{-.08em}V}$$ Te V are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$m_{\ell \ell }$$ m ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$\,\text {fb}^{-1}$$ fb - 1 of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$ Te V . Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation. 
    more » « less
  4. A<sc>bstract</sc> The collective behavior of$$ {\textrm{K}}_{\textrm{S}}^0 $$ K S 0 and$$ \Lambda /\overline{\Lambda} $$ Λ / Λ ¯ strange hadrons is studied by measuring the elliptic azimuthal anisotropy (v2) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy$$ \sqrt{s_{\textrm{NN}}} $$ s NN = 8.16 TeV and lead-lead (PbPb) collisions at$$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20 GeV is present. The strange hadronv2values extracted in pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size. 
    more » « less
  5. A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 . 
    more » « less